Abstract

The vegetation that grows on coastal wetlands is important for ecosystem functioning, a role mediated by plant traits. These traits can be affected by environmental stressors and by the competitive environment the plant experiences. The relative importance of these influences on different traits is poorly understood and, despite theoretical expectations for how factors may interact, empirical data are conflicting. Our aims are to determine the effect of flooding, species composition and their interaction on plant functional traits, and assess the role of biodiversity and species composition in driving community-level responses to flooding. We conducted a factorial glasshouse experiment assessing the effects of species composition (all combinations of three saltmarsh species, Aster tripolium, Plantago maritima and Triglochin maritima) and flooding (immersion of roots) on a suite of functional traits. We also related biomass in mixed species pots to that expected from monocultures to assess how species interactions affect community-level biomass. Species composition frequently interacted with flooding to influence functional traits and community-level properties. However, there was also considerable intraspecific variability in traits within each treatment. Generally, effects of flooding were more pronounced for below-ground than above-ground biomass, while composition affected above-ground biomass more than below-ground biomass. We found both negative and positive interactions between species (indicated by differences in above- and below-ground biomass from expectations under monoculture), meaning that composition was an important determinate of community function. While the effect of flooding alone on traits was relatively weak, it interacted with species composition to modify the response of both individual plants and communities. Our results suggest that responses to increased flooding will be complex and depend on neighbourhood species interactions. Furthermore, intraspecific trait variability is a potential resource that may dampen the effects of changes in flooding regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.