Abstract

The CLV3/EMBRYO-SURROUNDING REGION (CLE) peptides control plant development and response to the environment. Key conserved roles include the regulation of shoot apical meristems and the long-distance control of root colonisation by nutrient-acquiring microbes, including the widespread symbioses with arbuscular mycorrhizal fungi and nodulation with nitrogen-fixing bacteria in legumes. At least some signalling elements appear to operate across both processes but clear gaps in our understanding remain. In legumes, although CLE peptide signalling has been examined in detail in symbioses, the role of this pathway in SAM development of legumes is poorly understood. In this Research in Context, we review the literature to clarify the conserved and divergent elements of the CLAVATA-CLE peptide signalling pathways that control SAM, mycorrhizal colonisation and nodulation. We used novel pea mutants to determine the role of CLE signalling in regulating SAM development of a model legume, including interaction with temperature. We found that in pea both genetic and environmental buffering of the CLE pathway influences SAM development. In pea, the CLAVATA2 (CLV2) CLE receptor-like protein and the unknown gene product encoded by the K301 gene are required to limit SAM size and floral organ production under cool temperatures. In contrast, the CLAVATA1 receptor-like kinase promotes SAM proliferation and appears to do so via a CLV2-independent pathway. In contrast, we found no role for the RDN1 enzyme, capable of arabinosylating CLE peptides, in SAM development. Future studies in other legumes are required to examine the role of other CLE peptide signalling elements in SAM control. Studies in non-vascular mycorrhizal hosts could explore if symbioses control is also an ancestral role for this signalling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.