Abstract

By introducing impulsive biological control strategy, the dynamic behaviors of the two-prey one-predator model with defensive ability and Holling type-II functional response are investigated. By using Floquet’s Theorem and the small amplitude perturbation method, we prove that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical minimum value, and permanence conditions (that is, the impulsive period is greater than some critical maximum value) are established via the method of comparison involving multiple Liapunov functions. It is shown that our impulsive control strategy is more effective than the classical one. Furthermore, the effect of impulsive perturbations on the unforced continuous system is studied. From simulations, we find that the system has more complex dynamic behaviors and is dominated by periodic, quasi-periodic, and chaotic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.