Abstract

The biosynthesis of the glucuronide and sulphate conjugates of 4-hydroxy-3-methoxyphenylethanol was demonstrated in vitro by using the high-speed supernatant and microsomal fractions of liver respectively. These two conjugates were also produced simultaneously by using the post-mitochondrial fraction of rat, rabbit or guinea-pig liver. In contrast only the glucuronide was synthesized by human liver and only the sulphate by mouse and cat livers. Neither of these conjugates was formed by the kidney or the small or large intestine of the rat. A high sulphate-conjugating activity was observed in mouse kidney; the rate of sulphation of 4-hydroxy-3-methoxyphenylethanol with kidney homogenate and high-speed supernatant preparations was 1.8 times greater than with liver preparations. The sulpho-conjugates of 4-hydroxy-3-methoxyphenylethanol and 4-hydroxy-3-methoxy-phenylglycol were also formed by enzyme preparations of rabbit adrenal and rat brain; the glycol was the better substrate in the latter system. Mouse brain did not possess any sulphotransferase activity. For the conjugation of 4-hydroxy-3-methoxyphenylethanol by rabbit liver, the Km for UDP-glucuronic acid was 0.22 mM and that for Na2SO4 was 3.45 mM. The sulphotransferase has a greater affinity for 4-hydroxy-3-methoxyphenyl-ethanol than has glucuronyltransferase, as indicated by their respective Km values of 0.036 and 1.3 mM. It was concluded that sulphate conjugation of 4-hydroxy-3-methoxyphenylethanol predominates in most species of animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.