Abstract

An efficient strategy utilizing μ-thin layer chromatography coupled with laser ablation inductively coupled plasma mass spectrometry (μ-TLC-LA-ICP-MS) based on an IIP (ion imprinted polymer) was developed for the speciation of inorganic arsenic [As(III) and As(V)]. The characterization of the fabricated IIP was performed applying Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). To prepare the thin layer chromatography plate, CaSO4 (as a binder) was incorporated with the IIP. Then, the surface of the TLC plate was swept by LA, which volatilized the species of arsenic from the thin layer chromatography plate which thereafter were introduced into the ICP-MS system. Various effective parameters on isolation efficiency, such as the IIP/CaSO4 mass ratio, mobile phase composition, and pH, were examined. Under optimized conditions, the developed method demonstrated a detection limit of 0.3 μg L-1 with a wide linear dynamic range of 0.2-100 μg L-1, and a relative standard deviation of 3.8. The performance of the developed method was investigated for the isolation of As(III) and As(V) in wastewater (Mouteh, Aghdareh, and Zarmehr mines) and human blood plasma real samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.