Abstract

Molecular imprinting is an approach to synthesize receptors with specific molecular recognition properties. A computational method was carried out to study interaction between template and monomer in prepolymerization mixture. The functional monomer and template complexes were optimized, at the minimum energy confirmation using Austin Model 1 semi empirical method within Restricted Hartree Fock formalism. The theoretical results showed that allylthiourea (functional monomer) has the largest interaction energy towards template (sodium nitrate) with the mole ratio of 4 : 1; functional monomer : template. The resulting polymers were characterized using Fourier Transform infrared spectroscopy, thermogravimetry analysis and field emission scanning electron microscopy. Rebinding experiments were carried out to evaluate binding capacity of the polymer. The adsorption data of ion imprinted polymer (IIP) were fitted with Langmuir-Freundlich isotherm model. Pseudo-second order kinetic model was used to describe the kinetic adsorption behavior of IIP. The experimental binding result showed good agreement with theoretical computation and the IIP was further used for nitrate ion detection. The results of membrane optimization indicated that the sensor, which composed of 30% polyvinylchloride, 60% nitrophenyl octyl ether as a plasticizer, 2% sodium tetraphenyl borate, and 10% IIP as ionophore exhibited an almost Nernstian slope with the limit of detection 3.9 × 10-6 M. The fabricated sensor had shown good potential in nitrate detection with wide linear range, low limit of detection and found to have good selectivity towards nitrate ion over other anion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.