Abstract

Background: Liquid biopsies offer a minimally invasive approach to patient disease diagnosis and monitoring. However, these are highly affected by preprocessing variables with many protocols designed for downstream analysis of a single molecular biomarker. Here we investigate whether specialized blood tubes could be repurposed for the analysis of an increasingly valuable biomarker, extracellular vesicles (EVs). Methods: Blood was collected from three donors into K3-EDTA, Roche, or Streck cell-free DNA (cfDNA) collection tubes and processed using sequential centrifugation either immediately or after storage for 3 days. MicroEV were collected from platelet-poor plasma by 10,000 g centrifugation and NanoEVs isolated using size exclusion chromatography. Particle size and counts were assessed by Nanoparticle Tracking Analysis, protein quantitation by bicinchoninic acid assay (BCA) assay, and dot blotting for blood cell surface proteins. Results: MicroEVs and NanoEVs could be isolated from plasma collected using all three tube types. Major variations were seen with delayed time to processing. Both MicroEV particle number and protein content increased with the processing delay. The NanoEV number did not change with the time-delay but their protein quantity increased. EV-associated proteins predominantly arose from platelets (CD61) and erythrocytes (CD235a). However, leukocyte marker CD45 was only increased in NanoEVs from ethylenediaminetetraacetic acid (EDTA) tubes, suggestive of stabilization of nucleated cells by the specialized blood tubes. Epithelial cell surface marker EpCAM, often used as a marker of cancer, remained the same across conditions in both MicroEV and NanoEV preparations indicating that these EVs were stable with time. Conclusions: Specialized cfDNA collection tubes can be repurposed for MicroEV and NanoEV analysis; however, simple counting or using protein quantity as a surrogate of EV number may be confounded by preanalytical processing. The EVs would be suitable for disease selective EV subtype analysis if the molecular target of interest is not present in blood cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.