Abstract

Researchers in biomedical engineering are increasingly turning to weakly-supervised deep learning (WSDL) techniques [1] to tackle challenges in biomedical data analysis, which often involves noisy, limited, or imprecise expert annotations [2]. WSDL methods have emerged as a solution to alleviate the manual annotation burden for structured biomedical data like signals, images, and videos [3] while enabling deep neural network models to learn from larger-scale datasets at a reduced annotation cost. With the proliferation of advanced deep learning techniques such as generative adversarial networks (GANs), graph neural networks (GNNs) [4], vision transformers (ViTs) [5], and deep reinforcement learning (DRL) models [6], research endeavors are focused on solving WSDL problems and applying these techniques to various biomedical analysis tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.