Abstract
In a series of two articles Kebekus studied deformation theory of minimal rational curves on contact Fano manifolds. Such curves are called contact lines. Kebekus proved that a contact line through a general point is necessarily smooth and has a fixed standard splitting type of the restricted tangent bundle. In this paper we study singular contact lines and those with special splitting type. We provide restrictions on the families of such lines, and on contact Fano varieties which have reducible varieties of minimal rational tangents. We also show that the results about singular lines naturally generalise to complex contact manifolds, which are not necessarily Fano, for instance, quasiprojective contact manifolds or contact manifolds of Fujiki class C. In particular, in many cases the dimension of a family of singular lines is at most 2 less than the dimension of the contact manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.