Abstract
Complex contact manifolds arise naturally in differential geometry, algebraic geometry and exterior differential systems. Their classification would answer an important question about holonomy groups. The geometry of such manifold $X$ is governed by the contact lines contained in $X$. These are related to the notion of a variety of minimal rational tangents. In this review we discuss the partial classification theorems of projective complex contact manifolds. Among such manifolds one finds contact Fano manifolds (which include adjoint varieties) and projectivised cotangent bundles. In the first case we also discuss a distinguished contact cone structure, arising as the variety of minimal rational tangents. We discuss the repercussion of the aforementioned classification theorems for the geometry of quaternion-K\"ahler manifolds with positive scalar curvature and for the geometry of second-order PDEs imposed on hypersurfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.