Abstract

Accelerating urbanization seriously intensifies urban heat island effects in China, which in turn affects regional environment and human health. However, the spatiotemporal patterns of atmospheric urban heat island effects remain poorly understood in China as previous research is mostly based on satellite-sensed radiation temperatures. Using long-term daily meteorological observations from 1960 to 2017, this study explored the geographical distribution of atmospheric urban heat islands over diurnal, intra-annual, and inter-annual timescales in 84 major cities in China. The results show that on average, the intensity of the urban heat island reaches(0.9±1.1)℃, although large geographical variations were detected. The intensity was, overall, larger in northern China than in southern China; North China showed the largest annual intensity of(1.4±1.4)℃, and seasonal intensity variations were high in northeast and northwest China. Here, significantly higher intensity effects were measured at night[(1.2±1.1)℃] than during the day[(0.5±1.2)℃], and in summer than winter during the day, and in winter than summer during the night. Inter-annually, the annual mean urban heat island effect has increased by an average of 0.040℃ per decade, although this trend weakens after 2009. Furthermore, we found that the spatial patterns of atmospheric heat island intensity was greatly affected by climatic background conditions and the location of meteorological stations, while the long-term trends were strongly influenced by the impervious surface area. This study improves understanding of the atmospheric urban heat island effect in China and provides important insights for formulating urban land-use strategies to alleviate high temperatures and heatwaves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.