Abstract
Understanding changes in vegetation productivity and carbon use efficiency and their responses to climate change is significant to accurately assess and predict regional carbon budget in Northeast forest area, a region being an important carbon sink and sensitive to global change. Based on MODIS monitoring data and vegetation type distribution data, I analyzed the spatiotemporal varia-tions of ecosystem productivity (net primary productivity (NPP), gross primary productivity (GPP)) and carbon use efficiency (NPP/GPP) of Northeast forest from 2000 to 2015. Results showed that the average NPP and GPP were 346.4 and 773 g C·m-2·a-1, respectively, and the average NPP/GPP was 0.45 during 2000 and 2015. NPP and GPP of different forest types were following the order: coniferous and broad-leaved mixed forests > deciduous broad-leaved forests > coniferous forests, while the difference in NPP/GPP was not significant among different forest types. NPP and GPP were high in Southeast part and low in Northwest part. From 2000 to 2015, the NPP, GPP and NPP/GPP of Northeast forest showed a fluctuating increase, suggesting the carbon sequestration capacity was gradually enhanced. However, the trends and rates of NPP, GPP and NPP/GPP showed spatial variation. NPP, GPP and NPP/GPP increased significantly in the southern part of the Daxing'anling while decreased significantly in the northern part of the Daxing'anling, and showed a weak increasing trend in the rest of Northeast forest. The increase of annual precipitation was the main factor driving the fluctuating increase of NPP, GPP and NPP/GPP in Northeast forest.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have