Abstract

Whereas the adverse effects of vanadium released from smelting activities on soil microbial ecology have been widely recognized, little is known about spatiotemporal vanadium distribution and microbial community dynamics in typical contaminated sites. This study describes vanadium contents associated with health risk and microbial responses in both topsoil and subsoil during four consecutive seasons around an ongoing-production smelter in Panzhihua, China. Higher levels of vanadium concentration exceeding soil background value in China (82 mg/kg) were found close to the smelter. Vanadium concentrations decreased generally with the increase in distance to the smelter and depth below surface, as soil vanadium pollution is induced mainly by atmospheric deposition of vanadium bearing dust during smelting. Residual fraction was the predominated vanadium form in soils, with pronounced increase in bioavailable vanadium during rainfall period due to frequent drought-rewetting process. Topsoil close to the smelter exhibited significant contamination, inducing high probability of adverse health effects. Spatiotemporal vanadium distribution creates filtering effects on soil microorganisms, promoting metal tolerant genera in topsoil (e.g. Microvirga) and subsoil (e.g. Bacillus, Geobacter), which is the key in maintaining the community structure by promoting cooperative relation with other taxa. Our results reveal spatiotemporal vanadium distribution in soils at site scale with potential health risk and microbial responses, which is helpful in identifying severe contamination and implementing bioremediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.