Abstract

Bio-treatment of flotation wastewater has been proven to be both effective and economical, as a treatment method. Despite this, little is known regarding the effects of toxic organic floatation reagents such as Dianilinodithiophosphoric acid (DDA), on the microbial community performance or dynamics, which are critical to the effective performance of the bio-treatment reactor. A submerged membrane bioreactor (sMBR) was constructed to continuously treat simulated wastewater contaminated with DDA, an organic flotation reagent that is now considered a significant pollutant. The performance of the sMBR system was investigated at different DDA loading concentrations, with assessment of the effects of DDA on the microbial communities within the sMBR, in particular the biodiversity and succession within the microbial community. Results showed that, with increased DDA loadings, the performance of the sMBR was initially negatively affected, but the system adapted efficiently and consistently reached a COD removal rate of up to 80%. Increased DDA loading concentrations had an adverse effect on the activity of both the activated sludge and microbial communities, resulting in a large alteration in microbial dynamics, especially during the start-up stage and the high DDA loading stage. Strains capable of adapting to the presence of DDA, capable of degrading DDA or utilizing its byproducts, were enriched within the sMBR community, such as Zoogloea, Clostridium, Sideroxydans lithotrophicus, Thiobacillus, Thauera amino aromatica and Alicycliphilus denitrificans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call