Abstract

AbstractIn this paper, a scalar auxiliary variable approach combining with a discontinuous Galerkin method is proposed to handle the gradient‐type nonlinear term. The nonlinear convection–diffusion equation is used as the model. The proposed equivalent system can effectively handle the nonlinear convection term by incorporating the spatial and temporal information, globally. With the introduced auxiliary variable, the stability of the system can be simply characterized. In the space, according to the regularity of the system, an optimal accuracy is obtained with the discontinuous Galerkin method. Two different time discretization techniques, that is, backward Euler and linearly extrapolated Crank–Nicolson schemes, are separately considered with first order and second order accuracy. The proposed schemes are unconditionally stable with proper selected parameters. For the error estimates, the optimal convergence rates are rigorously proved. In the numerical experiments, the convergence information is confirmed and a benchmark problem with shock tendency is then followed with robustness demonstration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.