Abstract

We develop, analyze and numerically validate local discontinuous Galerkin (LDG) methods for solving the nonlinear Benjamin–Bona–Mahony (BBM) equation. With appropriately chosen numerical fluxes, the conventional LDG methods can be shown to preserve the discrete version of mass, and either preserve or dissipate the discrete version of energy, up to the round-off level. The error estimate with optimal order of convergence is provided for both the semi-discrete energy conserving and energy dissipative methods applied to the nonlinear BBM equation, by a novel technique to discover the connection between the error of the auxiliary and primary variables, and by carefully analyzing the nonlinear term. Fully discrete methods can be derived with energy-conserving implicit midpoint temporal discretization. Numerical experiments confirm the optimal rates of convergence, as well as the mass and energy conserving/dissipative property. The comparison of the long time behavior of the energy conserving and energy dissipative methods are also provided, to show that the energy conserving method produces a better approximation to the exact solution. In a recent study by Fu and Shu (J Comput Phys 394:329–363, 2019), optimal energy conserving discontinuous Galerkin methods based on doubling-the-unknowns technique were developed for the linear symmetric hyperbolic systems. We extend the idea to construct another class of energy conserving LDG methods for the nonlinear BBM equation. Their energy conservation property and optimal convergence rate (via a special constructed numerical projection) are investigated. We also provide a comparison of these two types of energy conserving LDG methods, and shown that, under the same setup of computational elements, the latter method produces a smaller numerical error with slightly longer computational time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call