Abstract

The first example of a material capable of spatiotemporal catch and release of singlet oxygen (1O2) in gel phase is presented. Several low molecular weight organogelators based around an oxotriphenylhexanoate (OTHO) core are developed and optimized with regard to; their gelation properties, and ability of releasing 1O2 upon thermal and/or photochemical external stimuli, in both gel phase and solution. Remarkably, reversible phase transitioning between the gel and solution phase are also demonstrated. Taken together two complementary modes of releasing 1O2, one thermally controlled over time, and one rapid release by means of photochemical stimuli is disclosed. These findings represent the first phase reversible system where function and aggregation properties can be controlled independently, and thus pave the way for novel applications in material sciences as well as in life sciences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call