Abstract

Recurrent seizures can induce mossy fiber sprouting (MFS), of the hippocampal dentate gyrus, and synaptic reorganization in mature brain. This changes local circuits and provides a structural basis for epileptogenesis in the hippocampus. However, the mechanisms of MFS and synaptic reorganization still remain unclear. Neural-cadherin (N-cadherin), a calcium adhesion molecule, plays an important role in neurite outgrowth, pathfinding, and synaptic specificity of early central nervous system development. It is unknown whether N-cadherin is involved in MFS after seizures in mature brain. To further examine the correlation between MFS and N-cadherin expression, we separately labeled MFS and N-cadherin with Timm staining and antibody in adult rats after status epilepticus (SE). Timm staining revealed that MFS is observed in the inner molecular layer of dentate gyrus of rats 2 and 4 weeks after SE. The observed MFS migrated from the hilus to the granule cell layer, gradually extending axons into the inner molecular layer to form an intense band. Immunohistochemical staining of N-cadherin revealed that the upregulated expression of N-cadherin was concentrated in the position of mossy fiber axonal sprouts of rats 1-4 weeks after SE, and that it was earlier than MFS. The spatial and temporal distribution consistence of N-cadherin and Timm staining supported the correlation that exists between N-cadherin expression and the process of aberrant MFS. This result suggests that N-cadherin may be involved in the pathfinding and synaptic specificity of MFS in mature brain after seizures, and can play an important role in the targeted growth of mossy fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call