Abstract
Spatio-temporal pattern formation in reaction–diffusion models of interacting populations is an active area of research due to various ecological aspects. Instability of homogeneous steady-states can lead to various types of patterns, which can be classified as stationary, periodic, quasi-periodic, chaotic, etc. The reaction–diffusion model with Rosenzweig–MacArthur type reaction kinetics for prey–predator type interaction is unable to produce Turing patterns but some non-Turing patterns can be observed for it. This scenario changes if we incorporate non-local interactions in the model. The main objective of the present work is to reveal possible patterns generated by the reaction–diffusion model with Rosenzweig–MacArthur type prey–predator interaction and non-local consumption of resources by the prey species. We are interested in the existence of Turing patterns in this model and in the effect of the non-local interaction on the periodic travelling wave and spatio-temporal chaotic patterns. Global bifurcation diagrams are constructed to describe the transition from one pattern to another one.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have