Abstract
Ensuring water resource security and enhancing resilience to extreme hydrological events demand a comprehensive understanding of water dynamics across various scales. However, monitoring water bodies with highly seasonal hydrological variability, particularly using medium-resolution satellite imagery such as Landsat 4-9, presents substantial challenges. This study introduces the Normalized Difference Water Fraction Index (NDWFI) based on spectral mixture analysis (SMA) to improve the detection of subtle and dynamically changing water bodies. First, the effectiveness of NDWFI is rigorously assessed across four challenging sites. The findings reveal that NDWFI achieves an average overall accuracy (OA) of 98.2% in water extraction across a range of water-covered scenarios, surpassing conventional water indices. Subsequently, using approximately 11,000 Landsat satellite images and NDWFI within the Google Earth Engine (GEE) platform, this study generates a high-resolution surface water (SW) map for Jiangsu Province, China, exhibiting an impressive OA of 95.91% ± 0.23%. We also investigate the stability of the NDWFI threshold for water extraction and its superior performance in comparison to existing thematic water maps. This research offers a promising avenue to address crucial challenges in remote sensing hydrology monitoring, contributing to the enhancement of water security and the strengthening of resilience against hydrological extremes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have