Abstract

All external sensory stimuli produce a spatiotemporal pattern of action potentials, which is transmitted to the biological neural system to be processed. The relative timing of synaptic spikes from different presynaptic neurons represents the features of the stimuli. A fundamental prerequisite in cortical information processing is the discrimination of different spatiotemporal input sequences. Here, capacitively coupled multiterminal oxide-based neuro-transistors are proposed for spatiotemporal information processing, mimicking the dendritic discriminability of different spatiotemporal input sequences. The experimental results demonstrate that such multiterminal neuromorphic devices can act as spatiotemporal information processing compartments for fundamental cortical computation. Also, as an example of spatiotemporal information processing, sound location functionality of the human brain is also emulated by constructing a simple artificial neural network based on such oxide-based multiterminal neuro-transistors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.