Abstract

Accurately predicting traffic flow is crucial for optimizing traffic conditions, reducing congestion, and improving travel efficiency. To explore spatiotemporal characteristics of traffic flow in depth, this study proposes the MFSTBiSGAT model. The MFSTBiSGAT model leverages graph attention networks to extract dynamic spatial features from complex road networks, and utilizes bidirectional long short-term memory networks to capture temporal correlations from both past and future time perspectives. Additionally, spatial and temporal information enhancement layers are employed to comprehensively capture traffic flow patterns. The model aims to directly extract original temporal features from traffic flow data, and utilizes the Spearman function to extract hidden spatial matrices of road networks for deeper insights into spatiotemporal characteristics. Historical traffic speed and lane occupancy data are integrated into the prediction model to reduce forecasting errors and enhance robustness. Experimental results on two real-world traffic datasets demonstrate that MFSTBiSGAT successfully extracts and captures spatiotemporal correlations in traffic networks, significantly improving prediction accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.