Abstract

The pathophysiology of major depressive disorder (MDD) has been explored to be highly associated with the dysfunctional integration of brain networks. It is therefore imperative to explore neuroimaging biomarkers to aid diagnosis and treatment. In this study, we developed a spatiotemporal graph convolutional network (STGCN) framework to learn discriminative features from functional connectivity for automatic diagnosis and treatment response prediction of MDD. Briefly, dynamic functional networks were first obtained from the resting‐state fMRI with the sliding temporal window method. Secondly, a novel STGCN approach was proposed by introducing the modules of spatial graph attention convolution (SGAC) and temporal fusion. A novel SGAC was proposed to improve the feature learning ability and special anatomy prior guided pooling was developed to enable the feature dimension reduction. A temporal fusion module was proposed to capture the dynamic features of functional connectivity between adjacent sliding windows. Finally, the STGCN proposed approach was utilized to the tasks of diagnosis and antidepressant treatment response prediction for MDD. Performances of the framework were comprehensively examined with large cohorts of clinical data, which demonstrated its effectiveness in classifying MDD patients and predicting the treatment response. The sound performance suggests the potential of the STGCN for the clinical use in diagnosis and treatment prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.