Abstract

This article showcases the outcomes of a comprehensive spatiotemporal dynamic analysis conducted in forest vegetation areas within the forest-steppe zone of the Central Russian Upland (eastern Europe), spanning the period from 1970 to 2020. This study utilized high-resolution data from the Corona satellite system from the year 1970 as well as satellite imagery from the ArcGIS World Imagery database. Soil properties and their changes were assessed based on the analysis of soil bulk density (930 samples), soil organic carbon features, pH, available phosphorus, and the composition of salt extracts (1362 samples). We collected and analyzed 3920 soil samples in the field to study the impact of shelterbelts on soil moisture over a period of two years. For six selected key sites with a total area of 1722 km2, it was found that over a 50-year period, the area covered by forest vegetation increased from 14% to 24%. This expansion was primarily due to the planting and growth of young shelterbelts in the 1970s–1980s as well as widening anti-erosion shelterbelts on slopes and gullies. The average linear growth rate of forest vegetation boundaries was found to be 23.5 m (4.7 m per decade) for the entire study area. The expansion was highest on west-facing slopes, which was attributed to the higher moisture content from windward atmospheric precipitation events. However, alongside the increase in forest cover, degradation was also observed, particularly in old-age shelterbelts, which was attributed to increased fragmentation and mortality. A gradual increase in the extent of shelterbelt degradation was observed from the northwest to the southeast within the forest-steppe region, corresponding to areas with a drier climate. Additionally, the impact of shelterbelts on soil properties and soil cover was analyzed using four key sites and using fields and laboratory research methods. We detected a lateral uptake of substances from plowed soils into the soils of shelterbelts and vertical uptake from deep layers. The two-year observations (2020 and 2021) of soil moisture during the growing season (May–September) in two climatically contrasting forest-steppe areas revealed a more intensive accumulation of soil moisture in fields west of shelterbelts compared to those to the east of them, particularly within the 10 m zone near the shelterbelts. This can be attributed to arable fields on the windward side receiving more moisture compared to the leeward side. The formation of striped microstructures in the soil cover that occurred under the shelterbelts and on adjacent arable lands was influenced by various factors such as microclimatic conditions, vegetation types, ecological conditions for soil fauna, and human-induced soil processing and transformation along the shelterbelt boundaries. Shelterbelts and their adjacent areas in agro-landscapes are considered to be self-developing natural–anthropogenic geosystems with their own organizational structure. Therefore, their study is recommended as an integral part of modern geographical zoning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.