Abstract

We propose and analyse an human immunodeficiency virus (HIV) infection model with spatial diffusion and delay in the immune response activation. In the proposed model, the immune response is presented by the cytotoxic T lymphocytes (CTL) cells. We first prove that the model is well-posed by showing the global existence, positivity, and boundedness of solutions. The model has three equilibria, namely, the free-infection equilibrium, the immune-free infection equilibrium, and the chronic infection equilibrium. The global stability of the first two equilibria is fully characterized by two threshold parameters that are the basic reproduction number R0 and the CTL immune response reproduction number R1. The stability of the last equilibrium depends on R0 and R1 as well as time delay τ in the CTL activation. We prove that the chronic infection equilibrium is locally asymptotically stable when the time delay is sufficiently small, while it loses its stability and a Hopf bifurcation occurs when τ passes through a certain critical value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.