Abstract
Allen Cahn (AC) equation is highly nonlinear due to the presence of cubic term and also very stiff; therefore, it is not easy to find its exact analytical solution in the closed form. In the present work, an approximate analytical solution of the AC equation has been investigated. Here, we used the variational iteration method (VIM) to find approximate analytical solution for AC equation. The obtained results are compared with the hyperbolic function solution and traveling wave solution. Results are also compared with the numerical solution obtained by using the finite difference method (FDM). Absolute error analysis tables are used to validate the series solution. A convergent series solution obtained by VIM is found to be in a good agreement with the analytical and numerical solutions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.