Abstract

In the realm of ecology, species naturally strive to enhance their own survival odds. This study introduces and investigates a predator-prey model incorporating reaction-diffusion through a system of differential equations. We scrutinize how diffusion impacts the model’s stability. By analysing the stability of the model’s uniform equilibrium state, we identify a condition leading to Turing instability. The study delves into how diffusion influences pattern formation within a predator-prey system. Our findings reveal that various spatiotemporal patterns, such as patches, spots, and even chaos, emerge based on species diffusion rates. We derive the amplitude equation by employing the weak nonlinear multiple scales analysis technique and the Taylor series expansion. A novel sinc interpolation approach is introduced. Numerical simulations elucidate the interplay between diffusion and Turing parameters. In a two-dimensional domain, spatial pattern analysis illustrates population density dynamics resulting in isolated groups, spots, stripes, or labyrinthine patterns. Simulation results underscore the method’s effectiveness. The article concludes by discussing the biological implications of these outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.