Abstract

Global warming is causing some regions to experience frequent and severe drought, with important impacts on montane forest vegetation. In this study, the Qilian Mountains is on the northeastern margin of the Tibetan Plateau which was divided into three study areas, the eastern (HaXi), middle (XiShui) and western (QiFeng) parts. This work focused on interannual trend comparison of tree-ring width (TRW) and enhanced vegetation index (EVI), their relationship characterization from 2000 to 2020, and spatial and temporal pattern portrayal of response to climate factors. The results showed that: (1) the overall interannual variation of TRW and EVI showed a stable increasing trend, and the trend of TRW and EVI gradually became consistent with the increase in drought stress (from the eastern region to the western region and from high elevation to low elevation) (p < 0.01); (2) a significant positive relation was observed between TRW and EVI at the same sampling sites, and the synchrony of the positive correlation gradually increased with the increase of drought stress (p < 0.01); and (3) compared to TRW, EVI is significantly more sensitive with climatic variations, and the dominant climate factors affecting both TRW and EVI dynamics are gradually identical with the increase of drought stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call