Abstract

Improved knowledge of the time scales at which drought stress mostly influences tree growth is crucial for the early detection of forest dieback. This study aimed to evaluate the impact of climate (temperature and precipitation) on vegetation activity (normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)) of Pinus halepensis Mill. and Pinus pinea L. mixed forest located in western Albania and to assess the drought impact (standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI)) calculated at different time scales (1–12 months) on radial growth (earlywood width, latewood width, and tree-ring width) and vegetation activity of these species. Both vegetation indices showed a negative response to August temperatures, and the EVI responded positively to September precipitation. NDVI and EVI were significantly affected by the SPI in spring and late summer. All tree-ring features in P. halepensis were positively related with EVI in August, whereas P. pinea latewood width showed a significant and positive relationship with NDVI in September. Radial growth of P. halepensis responded significantly to both drought indices in late summer and early autumn, particularly the latewood width. Contrastingly, in P. pinea, only earlywood width showed vulnerability, mostly to the summer SPEI drought indices. These results are relevant to understand the impacts of increased drought intensity and frequency on tree radial growth and vegetation activity in a region that is vulnerable to climate variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call