Abstract
A noncollinear optical parametric amplifier (NOPA) can produce few-cycle femtosecond laser pulses that are ideally suited for time-resolved optical spectroscopy measurements. However, the nonlinear-optical process giving rise to ultrabroadband pulses is susceptible to spatiotemporal dispersion problems. Here, we detail refinements, including chirped-pulse amplification (CPA) and pulse-front matching (PFM), that minimize spatiotemporal dispersion and thereby improve the properties of ultrabroadband pulses produced by a NOPA. The description includes a rationale behind the choices of optical and optomechanical components, as well as assessment protocols. We demonstrate these techniques using a 1kHz, second-harmonic Ti:sapphire pump configuration, which produces ∼5-fs duration pulses that span from about 500 to 800nm with a bandwidth of about 200THz. To demonstrate the utility of the CPA-PFM-NOPA, we measure vibrational quantum beats in the transient-absorption spectrum of methylene blue, a dye molecule that serves as a reference standard.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have