Abstract

The reduction of carbon dioxide (CO2) emissions and sustainable development in low-carbon ways are of great significance to urban agglomerations. However, few studies are exploring the relationship between CO2 emissions and socioeconomic development at city levels from the perspective of clusters of regions. Based on the open data of inventory for anthropogenic CO2 emissions, nighttime light data, and population dataset as a proxy for the socioeconomic development levels of urban agglomerations, we used Mann–Kendall trend test, Tapio decoupling analysis, and spatial autocorrelation analysis to explore the spatiotemporal association of CO2 emissions and the impact of socioeconomic development on emissions in the nineteen urban agglomerations in China. Findings showed that the growth of CO2 emissions in China was primarily concentrated in urban agglomerations. The CO2 emissions in eastern coastal and northern urban agglomerations were much higher than those in other areas, while the emissions in western urban agglomerations were the lowest. The periodic characteristics of CO2 emissions were consistent with China's five-year development plan. Urban agglomerations in the early stage from 2000 to 2002 or with developed and stable industrial structures tended to achieve decoupling. High-high (HH) clusters of socioeconomic development with CO2 emissions were mainly distributed in urban agglomerations of the Beijing-Tianjin-Hebei region (BTH), the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), Yangtze River Delta (YRD), Huhhot-Baotou-Ordos-Yulin (HBOY), Shandong Peninsula (SP), and Central Shanxi (CS). Most of the clusters except those in HBOY shrunk from 2000 to 2010 and remained relatively stable from 2010 to 2019. These urban agglomerations should promote synergistic emission reduction. High-low (HL) clusters mostly appeared in central cities with a high socioeconomic level and surrounding cities with low CO2 emissions s, i.e., in urban agglomerations of Chengdu-Chongqing region (CC), the Beibu Gulf (BG), and Lanzhou-Xining (LX). These urban agglomerations with prominent polarization phenomena should adhere to regional overall coordination and thus minimize total regional costs of CO2 emission reduction. The results could provide references for the synergistic reduction of CO2 emissions and the coordinated development in urban agglomerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call