Abstract
Traffic flow forecasting is a classical spatio-temporal data mining problem with many real-world applications. Recently, various methods based on Graph Neural Networks (GNN) have been proposed for the problem and achieved impressive prediction performance. However, we argue that the majority of existing methods disregarding the importance of certain nodes (referred to as pivotal nodes) that naturally exhibit extensive connections with multiple other nodes. Predicting on pivotal nodes poses a challenge due to their complex spatio-temporal dependencies compared to other nodes. In this paper, we propose a novel GNN-based method called Spatio-Temporal Pivotal Graph Neural Networks (STPGNN) to address the above limitation. We introduce a pivotal node identification module for identifying pivotal nodes. We propose a novel pivotal graph convolution module, enabling precise capture of spatio-temporal dependencies centered around pivotal nodes. Moreover, we propose a parallel framework capable of extracting spatio-temporal traffic features on both pivotal and non-pivotal nodes. Experiments on seven real-world traffic datasets verify our proposed method's effectiveness and efficiency compared to state-of-the-art baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.