Abstract

Traffic flow forecasting is an essential task of an intelligent transportation system (ITS), closely related to intelligent transportation management and resource scheduling. Dynamic spatial-temporal dependencies in traffic data make traffic flow forecasting to be a challenging task. Most existing research cannot model dynamic spatial and temporal correlations to achieve well-forecasting performance. The multi-head self-attention mechanism is a valuable method to capture dynamic spatial-temporal correlations, and combining it with graph convolutional networks is a promising solution. Therefore, we propose a multi-head self-attention spatiotemporal graph convolutional network (MSASGCN) model. It can effectively capture local correlations and potential global correlations of spatial structures, can handle dynamic evolution of the road network, and, in the time dimension, can effectively capture dynamic temporal correlations. Experiments on two real datasets verify the stability of our proposed model, obtaining a better prediction performance than the baseline algorithms. The correlation metrics get significantly reduced compared with traditional time series prediction methods and deep learning methods without using graph neural networks, according to MAE and RMSE results. Compared with advanced traffic flow forecasting methods, our model also has a performance improvement and a more stable prediction performance. We also discuss some problems and challenges in traffic forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.