Abstract
Traffic flow forecasting plays a crucial role in the construction of intelligent transportation. The aims of this paper are to fully exploit the spatial correlation between nodes in a traffic network and to compensate for the inability of graph-based deep learning methods to model multiple relationship types, resulting in inadequate extraction of spatially correlated information about the traffic network. In this paper, we propose a deep spatio-temporal recurrent evolution network based on the graph convolution network (STREGCN) for heterogeneous graphs. Specifically, we transform the traffic network into a multi-relational heterogeneous graph to improve the information representation of the graph. This allows our model to capture multiple types of spatially relevant information. In the temporal dimension, we use one-dimensional causal convolution based on the gated linear unit to extract the temporal correlation information of the traffic flow. In addition, we designed the output of the spatio-temporal convolution module to obtain the final traffic flow predictions after a fully connected layer. Experiments on real datasets illustrate the effectiveness of the proposed STREGCN model and show the importance of representing information through heterogeneous graphs for the task of traffic flow prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.