Abstract

Kernel sparse representation classification (KSRC), a nonlinear extension of sparse representation classification, shows its good performance for hyperspectral image classification. However, KSRC only considers the spectra of unordered pixels, without incorporating information on the spatially adjacent data. This paper proposes a neighboring filtering kernel to spatial-spectral kernel sparse representation for enhanced classification of hyperspectral images. The novelty of this work consists in: 1) presenting a framework of spatial-spectral KSRC; and 2) measuring the spatial similarity by means of neighborhood filtering in the kernel feature space. Experiments on several hyperspectral images demonstrate the effectiveness of the presented method, and the proposed neighboring filtering kernel outperforms the existing spatial-spectral kernels. In addition, the proposed spatial-spectral KSRC opens a wide field for future developments in which filtering methods can be easily incorporated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.