Abstract

In this paper a new classification method called locality-sensitive kernel sparse representation classification (LS-KSRC) is proposed for face recognition. LS-KSRC integrates both sparsity and data locality in the kernel feature space rather than in the original feature space. LS-KSRC can learn more discriminating sparse representation coefficients for face recognition. The closed form solution of the l1-norm minimization problem for LS-KSRC is also presented. LS-KSRC is compared with kernel sparse representation classification (KSRC), sparse representation classification (SRC), locality-constrained linear coding (LLC), support vector machines (SVM), the nearest neighbor (NN), and the nearest subspace (NS). Experimental results on three benchmarking face databases, i.e., the ORL database, the Extended Yale B database, and the CMU PIE database, demonstrate the promising performance of the proposed method for face recognition, outperforming the other used methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.