Abstract

ABSTRACT We present high-resolution long-slit spectroscopy of a Balmer-dominated shock in the northeastern limb of the Cygnus Loop with the Subaru high dispersion spectrograph. By setting the slit angle along the shock normal, we investigate variations of the flux and profile of the Hα line from preshock to postshock regions with a spatial resolution of ∼4 × 1015 cm. The Hα line profile can be represented by a narrow (28.9 ± 0.7 km s−1) Gaussian in a diffuse region ahead of the shock, i.e., a photoionization precursor, and narrow (33.1 ± 0.2 km s−1) plus broad (130–230 km s−1) Gaussians at the shock itself. We find that the width of the narrow component abruptly increases up to 33.1 ± 0.2 km s−1, or 38.8 ± 0.4 km s−1 if we eliminate projected emission originating from the photoionization precursor, in an unresolved thin layer (≲4 × 1015 cm at a distance of 540 pc) at the shock. We show that the sudden broadening can be best explained by heating via damping of Alfvén waves in a thin cosmic-ray (CR) precursor, although other possibilities are not fully ruled out. The thickness of the CR precursor in the Cygnus Loop (a soft gamma-ray emitter) is an order of magnitude thinner than that in Tycho’s Knot g (a hard gamma-ray emitter), which may be caused by the different energy distribution of accelerated particles between the two sources. In this context, systematic studies might reveal a positive correlation between the thickness of the CR precursor and the hardness of the CR energy distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.