Abstract

Nonlinear optical plasmonics investigates the emission of plasmonic nanoantennas with the aid of nonlinear spectroscopy. Here we introduce nonlinear spatially resolved spectroscopy (NSRS) which is capable of imaging the k-space as well as spatially resolving the THG signal of gold nanoantennas and investigating the emission of individual antennas by wide-field illumination of entire arrays. Hand in hand with theoretical simulations, we demonstrate our ability of imaging various oscillation modes inside the nanostructures and therefore spatial emission hotspots. Upon increasing intensity of the femtosecond excitation, an individual destruction threshold can be observed. We find certain antennas becoming exceptionally bright. By investigating those samples taking structural SEM images of the nanoantenna arrays afterward, our spatially resolved nonlinear image can be correlated with this data proving that antennas had deformed into a peanut-like shape. Thus, our NSRS setup enables the investigation of a nonlinear self-enhancement process of nanoantennas under critical laser excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.