Abstract

We report an investigation on the stress-induced breakdown (BD) in ultrathin oxide grown by atomic force microscopy (AFM oxide). A conducting atomic force microscopy (c-AFM) technique was employed to stress the AFM oxide and examine its BD behavior. It was found that thermal annealing has a strong impact on the dielectric strength of AFM oxide. The stress-induced trap generation probability, Pt, could be reduced by ∼50% after annealing the oxide at elevated temperatures. Such a thermal effect is related to the local structural relaxation and trap state minimization in AFM oxide upon annealing. The spatially resolved current images allow a microscopic diagnosis of the distribution of BD sites: isolated single BD spots and laterally propagated BD areas were observed in an oxide dot. Soft and hard breakdown sites were also distinguished on the current images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.