Abstract

Spatially-explicit bottom-up energy models with detailed renewable energy representation are increasingly developed. In order to inform such models, we investigate spatial diffusion patterns of solar PV projects in 2′222 Swiss municipalities. Using a dataset of feed-in tariff and one-time subsidy recipients in 2016, we show that PV diffusion was spatially uneven throughout Switzerland in terms of four indicators: the number of PV projects per municipality, per 1′000 inhabitants, per unit of municipal electricity demand, and per unit of municipal land area. Urban-rural divide and exploitable solar PV potential are the key, but not the only predictors of the spatial heterogeneity in PV diffusion. The structure of the municipal economy, socio-demographic characteristics, regional spillover effects, and additional differences in local contexts, such as local policies, matter as well. Spatial diffusion patterns to some extent structurally differ across sub-national regions too, indicating that such empirical investigations are valuable in order to understand what can be generalized. We conclude with recommendations for developing and validating spatially-resolved energy models so that they capture realistic patterns of solar PV diffusion: gather, maintain and analyze spatial data on PV projects and develop robust modelling functions that do not only rely on PV potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.