Abstract

Edge contacts between two-dimensional (2D) materials in the in-plane direction can achieve minimal contact area and low contact resistance, producing atomically thin devices with improved performance. Particularly, lateral heterojunctions of metallic graphene and semiconducting transition metal dichalcogenides (TMDs) exhibit small Schottky barrier heights due to graphene's low work-function. However, issues exist with the fabrication of highly transparent and flexible multi-functional devices utilizing lateral heterostructures (HSs) of graphene and TMDs via spatially controlled growth. This review demonstrates the growth and electronic applications of lateral HSs of graphene and TMDs, highlighting key technologies controlling the wafer-scale growth of continuous films for practical applications. It deepens the understanding of the spatially controlled growth of lateral HSs using chemical vapor deposition methods, and also contributes to the applications that depend on the scale-up of all-2D electronics with ultra-high electrical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call