Abstract

Immobilization of biomolecules into porous materials could lead to significantly enhanced performance in terms of stability towards harsh reaction conditions and easier separation for their reuse. Metal-Organic Frameworks (MOFs), offering unique structural features, have emerged as a promising platform for immobilizing large biomolecules. Although many indirect methods have been used to investigate the immobilized biomolecules for diverse applications, understanding their spatial arrangement in the pores of MOFs is still preliminary due to the difficulties in directly monitoring their conformations. To gain insights into the spatial arrangement of biomolecules within the nanopores. We used in situ small-angle neutron scattering (SANS) to probe deuterated green fluorescent protein (d-GFP) entrapped in a mesoporous MOF. Our work revealed that GFP molecules are spatially arranged in adjacent nanosized cavities of MOF-919 to form “assembly” through adsorbate-adsorbate interactions across pore apertures. Our findings, therefore, lay a crucial foundation for the identification of proteins structural basics under confinement environment of MOFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.