Abstract
Disaggregation use to separate and classify the data based on certain characteristics or on administrative level. Disaggregated data is very important because some indicators not measured on all characteristics. Detailed disaggregation for development indicators is important to ensure that everyone benefits from development and support better development-related policymaking. This paper aims to explore different methods to disaggregate national employment-to-population ratio indicator to province- and city-level. Numerical approach applied to overcome the problem of disaggregation unavailability by constructing several spatial weight matrices based on the neighbourhood, Euclidean distance and correlation. These methods can potentially be used and further developed to disaggregate development indicators into lower spatial level even by several demographic characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.