Abstract
Light-emitting porous amorphous silicon has been produced by anodization in HF of hydrogenated amorphous silicon films. The maximal thickness of the porous films is limited by the onset of an instability which results in the formation of large channels short-circuiting the amorphous layer. This is due to the high resistivity of the amorphous silicon films as compared to that of the electrolyte. Confinement effects on the electron wavefunction are analyzed in situ using photoluminescence measurements in hydrofluoric acid and compared to those observed in porous crystalline silicon. For crystalline silicon, a huge blue shift of the photoluminescence is observable upon reducing the size of the structures by photo-etch, showing clear evidence of quantum confinement effects in this material. No shift has been observed when carrying out the same experiment with amorphous silicon. This indicates that the extent of the wavefunction in the bandtail states involved in luminescence is too small to be sensitive to confinement down to the minimum sizes of our porous material (\(\) 3 nm). Measurements of the width and the temperature dependence of the photoluminescence demonstrate that the Urbach energy does not change upon increasing the porosity, i.e., upon decreasing the size of the a-Si:H nanostructures, in contradiction with what has been reported in ultrathin a-Si:H multilayers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.