Abstract

Abstract Leaf trichomes are derived from epidermal cells and serve an important function in regulating leaf heat balance and gas exchange. Variation in leaf functional traits is critical for predicting how plants will react to global climate change. In this study, we aimed to investigate how leaf trichome densities vary along large geographic gradients and how they interact with with stomata in response to environmental change. We investigated the leaf trichome densities of 44 Quercus variabilis populations in Eastern Asia (24° to 51.8° N, 99° to 137° E) and their correlation with climatic factors and stomatal traits. In addition, 15 populations were grown in a common garden to study their adaptive variation and coordination with stomata. The mean value of trichome density in situ conditions was 459.78 trichome mm-2 with a range of 325.79 to 552.38 trichome mm-2. Trichome density increased with latitude and decreased with longitude. Both temperature and precipitation reduced the trichome density. Moreover, trichome density was positively correlated with stomatal density whether in situ or in the common garden, and both increased with drought. Our results suggested that leaf trichomes possess highly adaptive variation and are in close coordination with stomata in response to climate change. Our findings provide new insights toward elucidating the interactions between leaf traits and the adaptive strategies of plants under climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.