Abstract
Extracellular lignocellulose-degrading enzymes are responsible for the transformation of organic matter in hardwood forest soils. The spatial variability on a 12 × 12 m plot and vertical distribution (0–8 cm) of the ligninolytic enzymes laccase and Mn-peroxidase, the polysaccharide-specific hydrolytic enzymes endoglucanase, endoxylanase, cellobiohydrolase, 1,4-β-glucosidase, 1,4-β-xylosidase and 1,4-β- N-acetylglucosaminidase and the phosphorus-mineralizing acid phosphatase were studied in a Quercus petraea forest soil profile. Activities of all tested enzymes exhibited high spatial variability in the L and H horizons. Acid phosphatase and 1,4-β- N-acetylglucosaminidase exhibited low variability in both horizons, while the variability of Mn-peroxidase activity in the L horizon, and endoxylanase and cellobiohydrolase activities in the H horizon were very high. The L horizon contained 4× more microbial biomass (based on PLFA) and 7× fungal biomass (based on ergosterol content) than the H horizon. The L horizon also contained relatively more fungi-specific and less actinomycete-specific PLFA. There were no significant correlations between enzyme activities and total microbial biomass. In the L horizon cellulose and hemicellulose-degrading enzymes correlated with each other and also with 1,4-β- N-acetylglucosaminidase and acid phosphatase activities. Laccase, Mn-peroxidase and acid phosphatase activities correlated in the H horizon. The soil profile showed a gradient of pH, organic carbon and humic compound content, microbial biomass and enzyme activities, all decreasing with soil depth. Ligninolytic enzymes showed preferential localization in the upper part of the H horizon. Differences in enzyme activities were accompanied by differences in the microbial community composition where the relative amount of fungal biomass decreased and actinomycete biomass increased with soil depth. The results also showed that the vertical gradients occur at a small scale: the upper and lower parts of the H horizon only 1 cm apart were significantly different with respect to seven out of nine activities, microbial biomass content and community composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.