Abstract

The composition of microbial communities and the level of enzymatic activity in the soil are both important indicators of soil quality, but the mechanisms by which a soil bacterial community is generated and maintained are not yet fully understood. Two soil samples were collected from the same location, but each had been subjected to a different long-term fertilization treatment and was characterized by different microbial diversity, biomass and physicochemical properties. These samples were γ-sterilized and swap inoculated. Non-sterilized soil samples along with sterilized and inoculated soil samples were incubated for eight months before their nutrient content, microbial biomass, enzymatic activity and bacterial composition were analyzed. Total phosphorus, and potassium concentrations along with the overall organic matter content of the non-sterilized soil were all equal to those of the same soil that had been sterilized and self/swap inoculated. Additionally, the microbial biomass carbon concentration was not affected by the specific inoculum and varied only by soil type. The activities of catalase, invertase, urease, protease, acid phosphatase and phytase were smaller in the sterilized soils that had been inoculated with organisms from chemical fertilizer amended soil (NPK) when compared to sterilized soil inoculated with organisms from manure and chemical fertilizer amended soil (NPKM) and non-sterilized soil samples. Bacterial 16S rRNA examined by 454-pyrosequencing revealed that the composition of bacterial community reconstructed by immigrant microbial inoculum in the soil was mainly influenced by its physicochemical properties, although the microbial inoculum contained different abundances of bacterial taxa. For example, the pH of the soil was the dominant factor in reconstructing a new bacterial community. Taken together, these results demonstrated that both soil microbial composition and functionality were primarily determined by soil properties rather than the microbial inoculum, which contributed to our understanding of how soil microbial communities are generated and maintained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call