Abstract
Although numerous methods based on sequence image classification have improved the accuracy of synthetic-aperture radar (SAR) automatic target recognition, most of them only concentrate on the fusion of spatial features of multiple images and fail to fully utilize the temporal-varying features. In order to exploit the spatial and temporal features contained in the SAR image sequence simultaneously, this article proposes a sequence SAR target classification method based on the spatial-temporal ensemble convolutional network (STEC-Net). In the STEC-Net, the dilated 3-D convolution is first applied to extract the spatial-temporal features. Then, the features are gradually integrated hierarchically from local to global and represented as the united tensors. Finally, a compact connection is applied to obtain a lightweight classification network. Compared with the available methods, the STEC-Net achieves a higher accuracy (99.93%) in the moving and stationary target acquisition and recognition (MSTAR) data set and exhibits robustness to depression angle, configuration, and version variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.