Abstract

Template-matching-based approaches have been developed for many years in the field of synthetic aperture radar (SAR) automatic target recognition (ATR). However, the performance of template-matching-based approaches is strongly affected by two factors: background clutter and noise and the size of the data set. To solve the problems mentioned above, a multilevel reconstruction-based multitask joint sparse representation method is proposed in this paper. According to the theory of the attributed scattering center (ASC) model, a SAR image exhibits strong point-scatter-like behavior, which can be modeled by scattering centers on the target. As a result, the ASCs can be extracted from SAR images based on the ASC model. Then, ASCs extracted from SAR images are used to reconstruct the SAR target at multilevels based on energy ratio (ER). The multilevel reconstruction is a process of data augmentation, which can not only restrain the background clutter and noise but also augment the data set. Several subdictionaries are designed after multilevel reconstruction according to the label of training samples. Meanwhile, a test image chip is reconstructed into multiple test images. The random projection coefficients associated with multiple reconstructed test images are fed into a multitask joint sparse representation classification framework. The final decision is made in terms of accumulated reconstruction error. Experiments on moving and stationary target acquisition and recognition (MSTAR) data set proved the effectiveness of our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call