Abstract

AbstractDeveloping policies to reduce carbon emissions in agriculture is crucial for achieving the ‘dual carbon’ goal. Therefore, scientifically analysing the temporal and spatial distribution characteristics of agricultural carbon sinks and their driving factors holds paramount importance for the coordinated and integrated development of regional agriculture and the realization of sustainable development. Based on the perspective of carbon cycle in agricultural production, the measurement system of agricultural net carbon sink was established from the perspective of carbon sink/carbon source, this study conducted an analysis of the temporal and spatial variation characteristics as well as driving mechanisms of agricultural net carbon sinks. The findings are as follows: (1) The agricultural net carbon sink exhibited an increasing trend from 2009 to 2020, with favourable intensity and level. (2) Agricultural land use and livestock and poultry production constituted the primary sources of agricultural carbon emissions. Notably, agricultural carbon emissions demonstrated a decreasing trend during the study period. (3) The net agricultural carbon sink displayed local spatial aggregation, indicating significant regional differences. (4) Factors such as rural economic level, urbanization level and agricultural employment significantly promoted the net carbon sink. In contrast, the rural industrial structure, technical level and crop seeding had inhibitory effects. Therefore, it is imperative to promote the reduction of agricultural carbon emissions in the Beijing-Tianjin-Hebei region. This entails accelerating the construction of new agriculture and rural areas, facilitating industrial upgrading, promoting the development of low-carbon-sink regions into high-carbon-sink regions and actively fostering the coordinated and integrated development of regional agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.